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Above: Cosmology tools plugin in ParaView 
promotes interactive feature exploration and includes 
a parallel reader for Voronoi tessellations and 
Minkowski functionals over connected components. 

Right: Connected components of 
Voronoi cells that have been filtered 

on cell volume are further 
characterized. 
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CosmoTools: In Situ Analysis 
Framework 

Left: Multistream counting consists of 
deforming a uniform mesh with fixed 
connectivity but updated particle positions 
and classifying structures by number of 
stream crossings. Speedup using DAX 
toolkit is shown. 

Left: Comparison of density-
based clustering (DBSCAN) and 
HACC friends-of-friends (FOF) 
halo finder shows similar results 
but improved linking at halo 
edges and less false linkage. 
Scalability of parallel DBSCAN 
is shown in center and right. 

Right: Vl3 is a 
parallel visual 

analysis framework 
for Blue Gene 

supercomputers, 
GPU-based 

clusters, and 
scientists’ laptops. 
Its modular design 
scales to 16K GPU 
cores and supports 

interactive visual 
analysis and data 

exploration  of 1 
trillion particles.  

Checkpoint and Analysis I/O 

Tess: In Situ Voronoi 
Tessellation Library 
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Histogram of Cell Density Contrast at t =  11
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Histogram of Cell Density Contrast at t =  21
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Histogram of Cell Density Contrast at t =  31
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Right: Overview of 
parallel algorithm by 

using an example 
with four processes. 

Particles and Voronoi 
cells are colored 
according to the 

process where they 
originated prior to 
exchanging ghost 

layer.  

Below: Density contrast distribution of evolving Voronoi cells at three time steps. Statistically, the 
trends are consistent with the formation of ;large-scale structures such as halos and voids. 

Bottom: In situ strong scaling (left) and weak scaling (center) are plotted on a log-log scale. Weak scaling time 
is normalized by the number of particles. Plots represent the total tessellation time, including the time to write 
the result to storage. Strong scaling efficiency is 41%; weak scaling efficiency is 86%. Bottom right: raw 
performance is tabulated. 

Above: Each Voronoi cell is associated with one 
input particle, the site of the cell. A cell consists 
all points closer to the site of that cell than to any 
other site 
    Vi = { x | d(x, si) < d(x, sk) } ∀ k≠ i 
In 3D, Voronoi cells are polyhedra; dual is 
Delaunay tetrahedralization. 

Right: A unified framework 
facilitates integration of new 
algorithms, services, and tools 
without modifying HACC code. 
A simple API, consisting of 7 
main functions allows different 
tools to be easily controlled 
through a configuration file. 

Speedups of  MPI DBSCAN on  astrophysics 
dataset 
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(a) Synthetic-cluster-extended dataset
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(b) Synthetic-random-extended dataset
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(c) Millennium-run-simulation dataset
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(d) Millennium-run-simulation dataset

Figure 6. Speedup of PDSDBSCAN-D on Hopper at NERSC, a CRAY XE6
distributed memory computer, on three different categories of datasets.
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(a) Local comp. vs. Merging on mm
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(b) Synthetic-cluster-extended dataset
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(c) Synthetic-random-extended dataset
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(d) Millennium-run-simulation dataset

Figure 7. (a) Trade-off between local computation and merging w.r.t the
number of processors on mm, a millennium-run-simulation dataset. (b)-(d)
Time taken by the preprocessing step, gather-neighbors, compared to the total
time taken by PDSDBSCAN-D using 64, 128, 256, and 512 processors.

synthetic-cluster-extended and millennium-simulation-run (db,
mb, md) datasets are significantly higher than the synthetic-
random-extended dataset. However, on the dataset mm in
millennium-simulation-run (Figure 6(d)), we get a speedup of
5,765 using 8,192 process cores.

Figure 7(a) shows the trade-off between the local compu-
tation and the merging stage by comparing them with the
total time (local computation time + merging time) in percent.
We use mm, the millennium-run-simulation dataset for this
purpose and continue up to 16,384 processors to understand
the behavior clearly. As can be seen, the communication time
increases (the computation time decreases) with the number
of processors. When using larger than 10,000 processors,
communication time starts dominating the computation time
and therefore, the speedup starts decreasing. For example, we
achieved a speedup of 5,765 using 8,192 process cores whereas

the speedup is 5,124 using 16,384 process cores. We observe
similar behaviors for other datasets.

Figure 7(b), 7(c), and 7(d) show a comparison of time
taken by the gather-neighbors preprocessing step over the
total time taken by PDSDBSCAN-D in percent on all datasets
using 64, 128, 256, and 512 processors. As can be seen,
the gather-neighbors step adds an overhead of maximum
0.59% (minimum 0.10% and average 0.27%) of total time on
synthetic-cluster-extended datasets. Similar results are found
on millennium-simulation-run datasets (maximum 4.82%,
minimum 0.21%, and average 1.25%). However, these num-
bers are relatively higher (maximum 9.82%, minimum 1.01%,
and average 3.76%) for synthetic-random-extended datasets as
the points are uniformly distributed in the space and therefore
the number of points gathered in each processor is higher
compared to the other two test sets. It is also to be noted
that these values increase with the number of processors and
also with the eps parameter as the overlapping region among
the processors is proportional to the number of processors. We
observe that on 64 processors the memory space taken by the
remote points in each processor is on average 0.68 times, 1.57
times, and 1.02 times on synthetic-cluster-extended, synthetic-
cluster-extended, and millennium-simulation-run datasets, re-
spectively, compared to the memory space taken by the local
points. These values changes to 1.27 times, 2.94 times, and
3.18 times, respectively on 512 processors. However, with this
scheme the local-computation stage in PDSDBSCAN-D can
perform the clustering without any communication overhead
similar to PDSDBSCAN-S. The alternative would be to perform
communication for each point to obtain its remote neighbors.

VI. CONCLUSION AND FUTURE WORK
In this study we have revisited the well-known density based

clustering algorithm, DBSCAN. This algorithm is known to
be challenging to parallelize as the computation involves an
inherent data access order. We present a new parallel DBSCAN
(PDSDBSCAN) algorithm based on the disjoint-set data struc-
ture. The use of this data structure works as a mechanism
for increasing concurrency, which again leads to scalable
performance. The algorithm uses a bottom-up approach to
construct the clusters as a collection of hierarchical trees. This
approach achieves a better-balanced work-load distribution.
PDSDBSCAN is implemented using both OpenMP and MPI.
Our experimental results conducted on a shared memory
computer show scalable performance, achieving speedups up
to a factor of 30.3 when using 40 cores on data sets contain-
ing several hundred million high-dimensional points. Similar
scalability results have been obtained on a distributed-memory
machine with a speedup of 5,765 using 8,192 process cores.
Our experiments also show that PDSDBSCAN significantly
outperforms existing parallel DBSCAN algorithms. We intend
to conduct further studies to provide more extensive results
on much larger number of cores with datasets from different
scientific domains. Finally, we note that our algorithm also
seems to be suitable for other parallel architectures, such as
GPU and heterogenous architectures.

Detail profiling for computation and 
communication (merging) costs Comparison of  DBSCAN and FOF clustering results 

Three 
representations 
of the same 
halo. From left 
to right: original 
raw particle 
data, Voronoi 
tessellation, and  
regular grid 
density 
sampling. 

Voronoi 
tessellation of 
cosmological 

simulations 
reveals regions 

of irregular 
low-density 
voids amid 
clusters of 

high-density 
halos 

Right: Data-parallel halo finder using 
dendrograms allows queries over a 

range of linking lengths. FOF halo 
finder implemented in PISTON 

leverages thread-parallelism of GPUs 
and many-core CPUs. 

Left: Cosmic emu 2D slicer 
portrays small 2D multiples of a 
5D space of cosmological input 
parameters and maps output 
power spectrum to color. 

Above: topology-aware 
data movement for I/O for 
smarter aggregation and 
improved bandwidth. 
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Under a common generic I/O interface, we 
implemented efficient parallel I/O checkpoint / 
restart based on GLEAN directly into the HACC 
simulation that delivers performance at full 
scale, and we are working toward pnetCDF 
implementations of in situ analysis products.  

• Scaled to the entire 768K cores of Mira BG/Q  
• Enabled HACC cosmology production runs for 

two Gordon Bell finalist submissions 
• Used in production on BG/Q (Mira) and Cray 

(Hopper) 
• Achieved 160 GB/s for HACC I/O and up to 

~10X improvement over the previous I/O 
mechanism on Mira 

• Written and read ~10 PB of data on Mira (and 
counting) 

• Used for all HACC inputs and outputs of 
production runs 

•  Initial lossless data compression work for I/O 
completed, and custom pre-conditioner 
development in progress.  

Above: analysis products 
such as Voronoi tessellations 
are now stored in pnetCDF. 

Overview 
SDAV technologies aim to help cosmologists unravel the mysterious 

nature of dark matter and energy by transforming raw data into 
meaningful representations. For example, mesh tessellations help 

analyze point data because they transform sparse discrete samples into 
dense continuous functions. Similarly, large-scale structures such as 
halos and voids are extracted, tracked, and summarized in high-level 

models. The goal of SDAV’s partnership with computational cosmology 
is to bring such methods to extreme scale. 


